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RTOS Basics 

Instructor:  
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History of Operating Systems  

• In the early days of computing, developers created 
software applications that included low-level machine 
code to initialize and interact with the system's 
hardware directly.  

• This tight integration between the software and 
hardware resulted in non-portable applications. 

•  A small change in the hardware might result in 
rewriting much of the application itself.  

• Obviously, these systems were difficult and costly to 
maintain. 
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History of Operating Systems..  

• As the software industry progressed, operating systems 
that provided the basic software foundation for computing 
systems evolved and facilitated the abstraction of the 
underlying hardware from the application code. 

•  In addition, the evolution of operating systems helped shift 
the design of software applications from large, monolithic 
applications to more modular, interconnected applications 
that could run on top of the operating system environment.  

• Over the years, many versions of operating systems 
evolved.  

• These ranged from general-purpose operating systems 
(GPOS), such as UNIX and Microsoft Windows, to smaller 
and more compact real-time operating systems, such as 
VxWorks.  
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History of Operating Systems…  

• In the 60s and 70s, when mid-sized and mainframe computing 
was in its prime, UNIX was developed to facilitate multi-user 
access to expensive, limited-availability computing systems.  

• UNIX allowed many users performing a variety of tasks to 
share these large and costly computers. multi-user access was 
very efficient: one user could print files, for example, while 
another wrote programs.  

• Eventually, UNIX was ported to all types of machines, from 
microcomputers to supercomputers.  

• In the 80s, Microsoft introduced the Windows operating 
system, which emphasized the personal computing 
environment.  

• Targeted for residential and business users interacting with PCs 
through a graphical user interface, the Microsoft Windows 
operating system helped drive the personal-computing era.  
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History of Operating Systems….  

• Later in the decade, momentum started building for 
the next generation of computing: the post-PC, 
embedded-computing era.  

• To meet the needs of embedded computing, 
commercial RTOSes, such as VxWorks, were 
developed.  

• Although some functional similarities exist between 
RTOSes and GPOSes, many important differences 
occur as well.  

• These differences help explain why RTOSes are better 
suited for real-time embedded systems. 

 
6 

E
m

be
d
d
ed

 S
ys

. 
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7 

  ©
 A

hm
ad

 E
l-B

an
na

 



RTOS vs. GPOS 
Core functional similarities 

• Some core functional similarities between a typical 
RTOS and GPOS include:  
• some level of multitasking,  

• software and hardware resource management,  

• provision of underlying OS services to applications, and  

• abstracting the hardware from the software application. 
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RTOS vs. GPOS.. 
Key functional differences 

• On the other hand, some key functional differences 
that set RTOSes apart from GPOSes include:  
• better reliability in embedded application contexts,  

• the ability to scale up or down to meet application needs,  

• faster performance,  

• reduced memory requirements,  

• scheduling policies tailored for real-time embedded systems,  

• support for diskless embedded systems by allowing 
executables to boot and run from ROM or RAM, and  

• better portability to different hardware platforms. 
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Defining an RTOS 

• A real-time operating system (RTOS) is a program that 
• schedules execution in a timely manner, 

• manages system resources, and  

• provides a consistent foundation for developing application 
code.  

• Application code designed on an RTOS can be quite 
diverse, ranging from a simple application for a digital 
stopwatch to a much more complex application for 
aircraft navigation.  

• Good RTOSes, therefore, are scalable in order to meet 
different sets of requirements for different 
applications.  
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RTOS 

• For example, in some applications, an RTOS comprises 
only a kernel, which is the core supervisory software 
that provides minimal logic, scheduling, and resource-
management algorithms.  

• Every RTOS has a kernel.  

• On the other hand, an RTOS can be a combination of 
various modules, including the kernel, a file system, 
networking protocol stacks, and other components 
required for a particular application 
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High-level view of an RTOS, its kernel, and other 
components found in embedded systems 
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(BSP): 
board support package 

(POSIX): 
Portable Operating 
System Interface 



Common components in an RTOS kernel that 
including objects, the scheduler, and some services. 
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Schedulers 

• The scheduler is at the heart of every kernel.  

• A scheduler provides the algorithms needed to 
determine which task executes when.  

• Main items related to schedulers:  
• schedulable entities 

• multitasking 

• context switching  

• dispatcher 

• scheduling algorithms. 
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Schedulable entities & Context Switching 

• Schedulable entities: 
• A schedulable entity is a kernel object that can compete for execution 

time on a system, based on a predefined scheduling algorithm.  

• Tasks and processes are all examples of schedulable entities found in most 
kernels.  

• Task Context: 
• Each task has its own context, which is the state of the CPU registers 

required each time it is scheduled to run. 

• Every time a new task is created, the kernel also creates and maintains an 
associated task control block (TCB).  

• TCBs are system data structures that the kernel uses to maintain task-
specific information.  

• TCBs contain everything a kernel needs to know about a particular task.  

• When a task is running, its context is highly dynamic. This dynamic context 
is maintained in the TCB.  

• When the task is not running, its context is frozen within the TCB, to be 
restored the next time the task runs. 
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Context Switching 

• When the kernel’s scheduler determines that it needs to 
stop running task 1 and start running task 2, it takes the 
following steps:  

 The kernel saves task 1’s context information in its TCB.  

 It loads task 2’s context information from its TCB, which 
becomes the current thread of execution.  

 The context of task 1 is frozen while task 2 executes, but if the 
scheduler needs to run task 1 again, task 1 continues from 
where it left off just before the context switch.  

• The time it takes for the scheduler to switch from one task 
to another is the context switch time.  

• It is relatively insignificant compared to most operations 
that a task performs. 
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Multitasking using a context switch. 
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• Multitasking is the ability of 
the operating system to 
handle multiple activities 
within set deadlines. 



Dispatcher 

• The dispatcher is the part of the scheduler that performs context 
switching and changes the flow of execution.  

• At any time an RTOS is running, the flow of execution, also known 
as flow of control, is passing through one of three areas:  
• through an application task,  
• through an ISR, or  
• through the kernel.  

• When a task or ISR makes a system call, the flow of control passes 
to the kernel to execute one of the system routines provided by 
the kernel.  

• When it is time to leave the kernel, the dispatcher is responsible 
for passing control to one of the tasks in the user’s application.  

• It will not necessarily be the same task that made the system call.  
• It is the scheduling algorithms of the scheduler that determines 

which task executes next.  
• It is the dispatcher that does the actual work of context switching 

and passing execution control. 
17 
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Scheduling Algorithms 

• The scheduler determines which task runs by following a 
scheduling algorithm (also known as scheduling policy). 

Types: 

• Non-preemtive Scheduling : 
• statically scheduled (task hold CPU until it completes) 

• Cooperative multitasking (task give up CPU by itself due to the 
lack of resources) e.g. pure round-robin. 

• Priority-based Scheduling: 
• fixed priority scheduling algorithms 

 Static timing scheduling  

 Round-robin scheduling  

 Rate Monotonic Scheduling(RMS)  

• dynamic priority-based scheduling 
 Earliest Deadline First(EDF) 18 
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Objects 

• Kernel objects are special constructs that are the 
building blocks for application development for real-
time embedded systems.  

• The most common RTOS kernel objects are:  
• Tasks—are concurrent and independent threads of execution 

that can compete for CPU execution time.  

• Semaphores—are token-like objects that can be incremented 
or decremented by tasks for synchronization or mutual 
exclusion.  

• Message Queues—are buffer-like data structures that can be 
used for synchronization, mutual exclusion, and data exchange 
by passing messages between tasks.  
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Services 

• Along with objects, most kernels provide services that 
help developers create applications for real-time 
embedded systems.  

• These services comprise sets of API calls that can be 
used to perform operations on kernel objects or can be 
used in general to facilitate timer management, 
interrupt handling, device I/O, and memory 
management.  

• Other services might be provided; these services are 
those most commonly found in RTOS kernels.  
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Key Characteristics of an RTOS 

• An application's requirements define the requirements 
of its underlying RTOS.  

• Some of the more common attributes are  
• Reliability 

 Depending on the application, the system might need to operate 
for long periods without human intervention. 

• Predictability 

 The RTOS used in real-time systems needs to be predictable to a 
certain degree to meet time requirements .  

 The term deterministic describes RTOSes with predictable 
behavior, in which the completion of operating system calls occurs 
within known timeframes. 
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Key Characteristics of an RTOS 

• Performance 
 This requirement dictates that an embedded system must perform 

fast enough to fulfill its timing requirements.  
 Typically, the more deadlines to be met-and the shorter the time 

between them-the faster the system's CPU must be. 
 Although underlying hardware can dictate a system's processing 

power, its software can also contribute to system performance.  

• Compactness 
 Application design constraints and cost constraints help determine 

how compact an embedded system can be.  
 For example, a cell phone clearly must be small, portable, and low 

cost. These design requirements limit system memory, which in turn 
limits the size of the application and operating system.  

• Scalability 
 Because RTOSes can be used in a wide variety of embedded systems, 

they must be able to scale up or down to meet application-specific 
requirements.  

 Depending on how much functionality is required, an RTOS should be 
capable of adding or deleting modular components, including file 
systems and protocol stacks. 
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DESIGN TIPS 
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Features of an ADC 

• Sampling rate – rate at which continuous analog signal is 
polled e.g. 1000 samples/sec 

• Quantization – divide analog signal into discrete levels 
• where Nq = quantisation levels; and n is the number of bits.  

• Resolution – depends on number of quantization levels 

 
 

• where RADC is the resolution of the ADC; L is the full-scale range 
of the ADC 

• Conversion time – how long it takes to convert the sampled 
signal to digital code 

• Conversion method – means by which analog signal is 
encoded into digital equivalent 
• Example – Successive approximation method & Flash 
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Flash ADC 

28 

• The simultaneous, or flash, 
method of A/D conversion 
uses parallel comparators to 
compare the linear input 
signal with various reference 
voltages developed by a 
voltage divider. 

• When the input voltage 
exceeds the reference 
voltage for a given 
comparator, a high level is 
produced on that 
comparator’s output. 

 2n- 1 comparators are required for 
conversion to an n-digit binary number. 
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Typical timing requirement of one analog-to-
digital conversion 
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Example: PIC 16F87XA ADC module 
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Controlling the ADC 

31 

• The ADC is controlled by two SFRs, ADCON0 and ADCON1). 
• The result of the conversion is placed in two further SFRs, 

ADRESH and ADRESL.  

The ADCON0 register  
(address 1F H ) 
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 The ADCON1 register (address 9F H ) 

32 

E
m

be
d
d
ed

 S
ys

. 
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7 

  ©
 A

hm
ad

 E
l-B

an
na

 



Formatting the analog-to-digital 
converter conversion result 
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DAC 

• The reverse function of ADC. 

• Usually needs external interface circuit. 

• Convert digital values into continuous analogue signal 

• Decoding digital value to an analogue value at discrete 
moments in time based on value within register 

 

 

Where E0 is output voltage; Eref is reference voltage; Bn is status 
of successive bits in the binary register 
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Examples of DAC Circuits 

35 

• Scaling Adder as a four-digit  DAC 

• An R/2R ladder DAC 

I0=+V/8R 
I1=+V/4R 
I2=+V/2R 
I3=+V/R 

Vout(D0)=-Rf I0 

Vout(D1)=-Rf I1 

Vout(D2)=-Rf I2 

Vout(D3)=-Rf I3 
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Sensors 

• A sensor is a transducer that converts a physical stimulus 
from one form into a more useful form to measure the 
stimulus. 

• Two basic categories: 
1. Analog 

2. Discrete 
• Binary 

• Digital (e.g., pulse counter) 

Physical 
Medium 

Sensing 
Element 

Conditioning Target 
Handling 

Temperature Resistance Voltage Information 

Stimulus (s) Signal (S) 
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Sensors.. 

• Main categories 

• Any energy radiated? Passive vs. active sensors 

• Sense of direction? Omidirectional? 

 

• Passive, omnidirectional  

• Examples: light, thermometer, microphones, hygrometer, … 

• Passive, narrow-beam 

• Example: Camera 

• Active sensors 

• Example: Radar 

 

• Important parameter: Area of coverage 

• Which region is adequately covered by a given sensor?  
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Actuators 

• Actuators are hardware devices that convert a controller 
command signal into a change in a physical parameter 

• The change is usually mechanical (e.g., position or velocity) 

• An actuator is also a transducer because it changes one type 
of physical quantity into some alternative form 

• An actuator is usually activated by a low-level command 
signal, so an amplifier may be required to provide sufficient 
power to drive the actuator 
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Signal Processing 
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Mechanism 

Electric Hydraulic 
Pneumatic 

Final Actuation 
Element 

Actuator 
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Types of Actuators 

1. Electrical actuators 

• Electric motors 
• DC servomotors 

• AC motors 

• Stepper motors 

• Solenoids 

2. Hydraulic actuators 

• Use hydraulic fluid to amplify the controller 
command signal 

3. Pneumatic actuators 

• Use compressed air as the driving force 
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Assignment#4 

• Write a code that implements the cyclic scheduling algorithm 
for the below scenario and test it. 

• Task1: toggles a led status between on & off.  

• Task2: reads the status of a button and turn a led on or off 
depending on the button status. 

• Task3: increments a 7-segment display from 0 to 9 then 0 and 
so on. 
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• For more details, refer to: 

• Chapter 4 at Real-time concepts for embedded systems, CMP 
Books, 2003 by  Qing Li and Carolyn Yao (ISBN:1578201241). 

• Chapter 5 at Embedded Software Development with C, 
Springer 2009 by Kai Qian et al. 

• Chapter 10 at Introduction to Embedded Systems, Springer 
2014 by  Manuel Jiménez et al. 

 

• The lecture is available online at: 

• http://bu.edu.eg/staff/ahmad.elbanna-courses 

 

• For inquires, send to: 

• ahmad.elbanna@feng.bu.edu.eg 
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