
Lecture #9
RTOS Basics

Instructor:
Dr. Ahmad El-Banna

Communication and Information Engineering

S
p
r

i
n

g
 2

0
1
7

CIE 314
Embedded Systems Fundamentals

©
 A

hm
ad

 E
l-B

an
na

1

Agenda

Introduction

RTOS vs. GPOS

Defining RTOS

Common components in an RTOS kernel

Key Characteristics of an RTOS

Design Tips

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

2

History of Operating Systems

• In the early days of computing, developers created
software applications that included low-level machine
code to initialize and interact with the system's
hardware directly.

• This tight integration between the software and
hardware resulted in non-portable applications.

• A small change in the hardware might result in
rewriting much of the application itself.

• Obviously, these systems were difficult and costly to
maintain.

3

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

History of Operating Systems..

• As the software industry progressed, operating systems
that provided the basic software foundation for computing
systems evolved and facilitated the abstraction of the
underlying hardware from the application code.

• In addition, the evolution of operating systems helped shift
the design of software applications from large, monolithic
applications to more modular, interconnected applications
that could run on top of the operating system environment.

• Over the years, many versions of operating systems
evolved.

• These ranged from general-purpose operating systems
(GPOS), such as UNIX and Microsoft Windows, to smaller
and more compact real-time operating systems, such as
VxWorks.

4

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

History of Operating Systems…

• In the 60s and 70s, when mid-sized and mainframe computing
was in its prime, UNIX was developed to facilitate multi-user
access to expensive, limited-availability computing systems.

• UNIX allowed many users performing a variety of tasks to
share these large and costly computers. multi-user access was
very efficient: one user could print files, for example, while
another wrote programs.

• Eventually, UNIX was ported to all types of machines, from
microcomputers to supercomputers.

• In the 80s, Microsoft introduced the Windows operating
system, which emphasized the personal computing
environment.

• Targeted for residential and business users interacting with PCs
through a graphical user interface, the Microsoft Windows
operating system helped drive the personal-computing era.

5

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

History of Operating Systems….

• Later in the decade, momentum started building for
the next generation of computing: the post-PC,
embedded-computing era.

• To meet the needs of embedded computing,
commercial RTOSes, such as VxWorks, were
developed.

• Although some functional similarities exist between
RTOSes and GPOSes, many important differences
occur as well.

• These differences help explain why RTOSes are better
suited for real-time embedded systems.

6

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

RTOS vs. GPOS
Core functional similarities

• Some core functional similarities between a typical
RTOS and GPOS include:
• some level of multitasking,

• software and hardware resource management,

• provision of underlying OS services to applications, and

• abstracting the hardware from the software application.

7

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

RTOS vs. GPOS..
Key functional differences

• On the other hand, some key functional differences
that set RTOSes apart from GPOSes include:
• better reliability in embedded application contexts,

• the ability to scale up or down to meet application needs,

• faster performance,

• reduced memory requirements,

• scheduling policies tailored for real-time embedded systems,

• support for diskless embedded systems by allowing
executables to boot and run from ROM or RAM, and

• better portability to different hardware platforms.

8

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Defining an RTOS

• A real-time operating system (RTOS) is a program that
• schedules execution in a timely manner,

• manages system resources, and

• provides a consistent foundation for developing application
code.

• Application code designed on an RTOS can be quite
diverse, ranging from a simple application for a digital
stopwatch to a much more complex application for
aircraft navigation.

• Good RTOSes, therefore, are scalable in order to meet
different sets of requirements for different
applications.

9

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

RTOS

• For example, in some applications, an RTOS comprises
only a kernel, which is the core supervisory software
that provides minimal logic, scheduling, and resource-
management algorithms.

• Every RTOS has a kernel.

• On the other hand, an RTOS can be a combination of
various modules, including the kernel, a file system,
networking protocol stacks, and other components
required for a particular application

10

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

High-level view of an RTOS, its kernel, and other
components found in embedded systems

11

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

(BSP):
board support package

(POSIX):
Portable Operating
System Interface

Common components in an RTOS kernel that
including objects, the scheduler, and some services.

12

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Schedulers

• The scheduler is at the heart of every kernel.

• A scheduler provides the algorithms needed to
determine which task executes when.

• Main items related to schedulers:
• schedulable entities

• multitasking

• context switching

• dispatcher

• scheduling algorithms.

13

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Schedulable entities & Context Switching

• Schedulable entities:
• A schedulable entity is a kernel object that can compete for execution

time on a system, based on a predefined scheduling algorithm.

• Tasks and processes are all examples of schedulable entities found in most
kernels.

• Task Context:
• Each task has its own context, which is the state of the CPU registers

required each time it is scheduled to run.

• Every time a new task is created, the kernel also creates and maintains an
associated task control block (TCB).

• TCBs are system data structures that the kernel uses to maintain task-
specific information.

• TCBs contain everything a kernel needs to know about a particular task.

• When a task is running, its context is highly dynamic. This dynamic context
is maintained in the TCB.

• When the task is not running, its context is frozen within the TCB, to be
restored the next time the task runs.

14

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Context Switching

• When the kernel’s scheduler determines that it needs to
stop running task 1 and start running task 2, it takes the
following steps:

 The kernel saves task 1’s context information in its TCB.

 It loads task 2’s context information from its TCB, which
becomes the current thread of execution.

 The context of task 1 is frozen while task 2 executes, but if the
scheduler needs to run task 1 again, task 1 continues from
where it left off just before the context switch.

• The time it takes for the scheduler to switch from one task
to another is the context switch time.

• It is relatively insignificant compared to most operations
that a task performs.

15

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Multitasking using a context switch.

16

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

• Multitasking is the ability of
the operating system to
handle multiple activities
within set deadlines.

Dispatcher

• The dispatcher is the part of the scheduler that performs context
switching and changes the flow of execution.

• At any time an RTOS is running, the flow of execution, also known
as flow of control, is passing through one of three areas:
• through an application task,
• through an ISR, or
• through the kernel.

• When a task or ISR makes a system call, the flow of control passes
to the kernel to execute one of the system routines provided by
the kernel.

• When it is time to leave the kernel, the dispatcher is responsible
for passing control to one of the tasks in the user’s application.

• It will not necessarily be the same task that made the system call.
• It is the scheduling algorithms of the scheduler that determines

which task executes next.
• It is the dispatcher that does the actual work of context switching

and passing execution control.
17

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Scheduling Algorithms

• The scheduler determines which task runs by following a
scheduling algorithm (also known as scheduling policy).

Types:

• Non-preemtive Scheduling :
• statically scheduled (task hold CPU until it completes)

• Cooperative multitasking (task give up CPU by itself due to the
lack of resources) e.g. pure round-robin.

• Priority-based Scheduling:
• fixed priority scheduling algorithms

 Static timing scheduling

 Round-robin scheduling

 Rate Monotonic Scheduling(RMS)

• dynamic priority-based scheduling
 Earliest Deadline First(EDF) 18

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Objects

• Kernel objects are special constructs that are the
building blocks for application development for real-
time embedded systems.

• The most common RTOS kernel objects are:
• Tasks—are concurrent and independent threads of execution

that can compete for CPU execution time.

• Semaphores—are token-like objects that can be incremented
or decremented by tasks for synchronization or mutual
exclusion.

• Message Queues—are buffer-like data structures that can be
used for synchronization, mutual exclusion, and data exchange
by passing messages between tasks.

19

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Services

• Along with objects, most kernels provide services that
help developers create applications for real-time
embedded systems.

• These services comprise sets of API calls that can be
used to perform operations on kernel objects or can be
used in general to facilitate timer management,
interrupt handling, device I/O, and memory
management.

• Other services might be provided; these services are
those most commonly found in RTOS kernels.

20

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Key Characteristics of an RTOS

• An application's requirements define the requirements
of its underlying RTOS.

• Some of the more common attributes are
• Reliability

 Depending on the application, the system might need to operate
for long periods without human intervention.

• Predictability

 The RTOS used in real-time systems needs to be predictable to a
certain degree to meet time requirements .

 The term deterministic describes RTOSes with predictable
behavior, in which the completion of operating system calls occurs
within known timeframes.

 21

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Key Characteristics of an RTOS

• Performance
 This requirement dictates that an embedded system must perform

fast enough to fulfill its timing requirements.
 Typically, the more deadlines to be met-and the shorter the time

between them-the faster the system's CPU must be.
 Although underlying hardware can dictate a system's processing

power, its software can also contribute to system performance.

• Compactness
 Application design constraints and cost constraints help determine

how compact an embedded system can be.
 For example, a cell phone clearly must be small, portable, and low

cost. These design requirements limit system memory, which in turn
limits the size of the application and operating system.

• Scalability
 Because RTOSes can be used in a wide variety of embedded systems,

they must be able to scale up or down to meet application-specific
requirements.

 Depending on how much functionality is required, an RTOS should be
capable of adding or deleting modular components, including file
systems and protocol stacks.

22

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

DESIGN TIPS

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

23

24

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

25

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

26

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Features of an ADC

• Sampling rate – rate at which continuous analog signal is
polled e.g. 1000 samples/sec

• Quantization – divide analog signal into discrete levels
• where Nq = quantisation levels; and n is the number of bits.

• Resolution – depends on number of quantization levels

• where RADC is the resolution of the ADC; L is the full-scale range
of the ADC

• Conversion time – how long it takes to convert the sampled
signal to digital code

• Conversion method – means by which analog signal is
encoded into digital equivalent
• Example – Successive approximation method & Flash

27

n

qN 2

121 





n

q

ADC

L

N

L
R

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Flash ADC

28

• The simultaneous, or flash,
method of A/D conversion
uses parallel comparators to
compare the linear input
signal with various reference
voltages developed by a
voltage divider.

• When the input voltage
exceeds the reference
voltage for a given
comparator, a high level is
produced on that
comparator’s output.

 2n- 1 comparators are required for
conversion to an n-digit binary number.

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Typical timing requirement of one analog-to-
digital conversion

29

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Example: PIC 16F87XA ADC module

30

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Controlling the ADC

31

• The ADC is controlled by two SFRs, ADCON0 and ADCON1).
• The result of the conversion is placed in two further SFRs,

ADRESH and ADRESL.

The ADCON0 register
(address 1F H)

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

 The ADCON1 register (address 9F H)

32

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Formatting the analog-to-digital
converter conversion result

33

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

DAC

• The reverse function of ADC.

• Usually needs external interface circuit.

• Convert digital values into continuous analogue signal

• Decoding digital value to an analogue value at discrete
moments in time based on value within register

Where E0 is output voltage; Eref is reference voltage; Bn is status
of successive bits in the binary register

 34

  n

n

ref BBBEE
1

210 225.05.0


 

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Examples of DAC Circuits

35

• Scaling Adder as a four-digit DAC

• An R/2R ladder DAC

I0=+V/8R
I1=+V/4R
I2=+V/2R
I3=+V/R

Vout(D0)=-Rf I0

Vout(D1)=-Rf I1

Vout(D2)=-Rf I2

Vout(D3)=-Rf I3

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

36

Sensors

• A sensor is a transducer that converts a physical stimulus
from one form into a more useful form to measure the
stimulus.

• Two basic categories:
1. Analog

2. Discrete
• Binary

• Digital (e.g., pulse counter)

Physical
Medium

Sensing
Element

Conditioning Target
Handling

Temperature Resistance Voltage Information

Stimulus (s) Signal (S)

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Sensors..

• Main categories

• Any energy radiated? Passive vs. active sensors

• Sense of direction? Omidirectional?

• Passive, omnidirectional

• Examples: light, thermometer, microphones, hygrometer, …

• Passive, narrow-beam

• Example: Camera

• Active sensors

• Example: Radar

• Important parameter: Area of coverage

• Which region is adequately covered by a given sensor?

37

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

http://www.mindsensors.com/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=78
http://images.google.com/imgres?imgurl=http://nxtasy.org/wp-content/uploads/2006/08/pressure_sensor.gif&imgrefurl=http://nxtasy.org/2006/08/24/pneumatic-pressure-for-nxt/&usg=__I8sfbTT0k7KuFGVxEqo869Tz1y0=&h=305&w=377&sz=29&hl=en&start=3&um=1&tbnid=0KJwhisfi6oBkM:&tbnh=99&tbnw=122&prev=/images?q=pressure+sensor&hl=en&rls=com.microsoft:en-ie:IE-SearchBox&rlz=1I7GGLR_en&sa=N&um=1

Actuators

• Actuators are hardware devices that convert a controller
command signal into a change in a physical parameter

• The change is usually mechanical (e.g., position or velocity)

• An actuator is also a transducer because it changes one type
of physical quantity into some alternative form

• An actuator is usually activated by a low-level command
signal, so an amplifier may be required to provide sufficient
power to drive the actuator

38

Signal Processing
& Amplification

Mechanism

Electric Hydraulic
Pneumatic

Final Actuation
Element

Actuator
Sensor

Logical

Signal

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Types of Actuators

1. Electrical actuators

• Electric motors
• DC servomotors

• AC motors

• Stepper motors

• Solenoids

2. Hydraulic actuators

• Use hydraulic fluid to amplify the controller
command signal

3. Pneumatic actuators

• Use compressed air as the driving force

39

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

http://images.google.ie/imgres?imgurl=http://www.fwmurphy.co.uk/images/RP23xx_solenoid_medres.jpg&imgrefurl=http://www.fwmurphy.co.uk/products/engine_controls/engmot_rp2300.htm&usg=__UdBA_StSqZ4oIbijTPS3RMoLaVA=&h=607&w=800&sz=92&hl=en&start=5&tbnid=7loeepr6ovfJLM:&tbnh=109&tbnw=143&prev=/images?q=solenoid&gbv=2&hl=en

Assignment#4

• Write a code that implements the cyclic scheduling algorithm
for the below scenario and test it.

• Task1: toggles a led status between on & off.

• Task2: reads the status of a button and turn a led on or off
depending on the button status.

• Task3: increments a 7-segment display from 0 to 9 then 0 and
so on.

40

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

• For more details, refer to:

• Chapter 4 at Real-time concepts for embedded systems, CMP
Books, 2003 by Qing Li and Carolyn Yao (ISBN:1578201241).

• Chapter 5 at Embedded Software Development with C,
Springer 2009 by Kai Qian et al.

• Chapter 10 at Introduction to Embedded Systems, Springer
2014 by Manuel Jiménez et al.

• The lecture is available online at:

• http://bu.edu.eg/staff/ahmad.elbanna-courses

• For inquires, send to:

• ahmad.elbanna@feng.bu.edu.eg

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

41

http://bu.edu.eg/staff/ahmad.elbanna-courses/
http://bu.edu.eg/staff/ahmad.elbanna-courses/
http://bu.edu.eg/staff/ahmad.elbanna-courses/
http://bu.edu.eg/staff/ahmad.elbanna-courses/
https://speakerdeck.com/ahmad_elbanna
mailto:ahmad.elbanna@fes.bu.edu.eg

